RATIONAL NUMBER OPERATIONS

CHEAT SHEET - A

Name ______ Date Pd

integers

ADDITION

- If the signs are the **SAME**, then **ADD** and use the same sign.
- If the signs are **DIFFERENT**, then **SUBTRACT** and **TAKE THE SIGN** of the number with the **GREATEST ABSOLUTE VALUE**.

-2 + -2 = -4

SUBTRACTION

Rewrite the problem to ADD THE
 OPPOSITE. Then, follow the rules for adding rational numbers.

MULTIPLICATION & DIVISION

- If there is an **EVEN NUMBER** of signs, then the solution is **POSITIVE**.
- If there is an **ODD NUMBER** of signs, then the solution is **NEGATIVE**.

INTEGER OPERATIONS

$$8 - II = -3$$

$$-3 - 13 = -16$$

$$15 \div -3 = \underline{-5}$$

$$-4 + -6 = -10$$

$$8 + -2 = 6$$

$$6 \cdot -9 = -54$$

$$-27 \div 9 = -3$$

$$|2 - (-9)| = 2|$$

Rational namber oberations

$$-9.6 \cdot 5 = -48$$

$$\frac{3}{5} \cdot \frac{1}{4} = \frac{3}{20}$$

$$-60.8 \div 4 = -15.2$$

$$\frac{5}{8} \div \frac{3}{4} = \frac{5}{6}$$

$$-12.7 \cdot -3 = 38.1$$

$$\frac{2}{3} \cdot \frac{3}{2} = 1$$

$$100 \div 2.5 = 40$$

$$\frac{4}{7} \div \frac{1}{2} = 1\frac{1}{7}$$

SIMILARITA

SIMILAR FIGURES have CORRESPONDING:

- I. PROPORTIONAL sides
- 2. EQUAL angles

$$\frac{A}{G} = \frac{B}{H}$$

scale factor

NEW ORIGINAL

ENLARGEMENTREDUCTIONscale factor is
greater than 1scale factor is
less than 1

The **SCALE FACTOR** is the ratio in which a figure is **DILATED**.

SCALE FACTOR \longrightarrow X = 4.5 FT Y = 7.5 FT

SCALE DRAWING: uses a **SCALE** to convert measurements

I CM = 2.5 MILES | I IN = 300 FEET

Frequently used on MAPS and BLUEPRINTS

- Label the various units
- The conversion will be given
- Set up and solve the proportion

Scale drawings

$$\frac{IN}{FT} = \frac{2}{75} = \frac{7}{X}$$

$$525 = 2X$$

$$262.5 = X$$

$$7 IN = 262.5 FT$$

RATES AND PERCENTS

CHEAT SHEET - A

RATE: a ratio with TWO DIFFERENT UNITS

\$5.25

UNIT RATE: a ratio with a quantity of ONE

PRICE IIB

FRACTIONAL UNIT RATE

- Will result in a complex fraction
- Follow the steps for dividing fractions

$$\frac{\text{MILES}}{\text{HR}} = \frac{\frac{1}{3}}{\frac{1}{4}} = \frac{1}{3} \cdot \frac{4}{1} = 1 \frac{1}{3}$$

1 | MILES IN | HOUR

B3162

INTEREST & ELLOR

SIMPLE INTEREST: $I = p \cdot r \cdot t$

I = interest

p = principal

r = annual interest rate (as a decimal)

t = time (in years)

Be sure to change the rate to a decimal and convert any number of months to years.

PERCENT ERROR

$$\frac{|A-X|}{|X|} = \frac{\%}{100}$$

A = approximate

$$X = exact$$

Name		
Date	Pd	

PERCENT VOCABULARY

MARKUP
tax tip mark up gratuity increase

PERCENT: a QUANTITY out of 100

- Set up a percent proportion or an equation
- Solve for the missing quantity
- Reread the problem to make sure you answer the question

$$\frac{\%}{100} = \frac{PART}{WHOLE}$$

 $\frac{\%}{100} = \frac{PART}{WHOLE} \qquad PART = \% \cdot WHOLE$ (as a decimal)

PERCENT OF CHANGE: the percent GAINED or **LOST** over a period of time

- Determine the change
- Set up a percent proportion
- Solve for the missing quantity
- Reread the problem to make sure you answer the question

$$\frac{\%}{100} = \frac{\text{CHANGE}}{\text{ORIGINAL}}$$

EQUATIONS AND INEQUALITIES

CHEAT SHEET - A

Name ______ Date Pd

solving equations

Use INVERSE OPERATIONS to UNDO the equation.

- undo addition or subtraction
- 6x + 7 = 31
- undo multiplication or division
- 6x = 24

• isolate the variable

x = 4

check your work

6(4)+7=31

GRAPH the inequality statement on a number line to represent **THE POSSIBLE SOLUTIONS**.

VALUE IS INCLUDED

0

VALUE IS NOT INCLUDED

graphing inequalities

ME STEPS OF INEQUALIFIES

SAME STEPS as SOLVING EQUATIONS!

- When dividing by a negative number, flip the inequality symbol.
- To check your work, choose a value that is within the constraints of the inequality and plug in the number.
- If it is correct, then you should get a true statement.

$$-\frac{1}{2}x - 5 > 25 - \frac{1}{2}(-80) - 5 > 25$$

$$-\frac{1}{2}x > 30 - \frac{1}{2}(-80) > 30$$

$$x < -60 40 > 30$$

INPQUALITY VOCABULARY

• Remember that each term can represent a different inequality symbol when writing inequalities.

<	<u><</u>	<u>></u>	>	=
less thanis fewer thanis smaller thanbelow	 less than or equal to maximum at most is not more than is not greater than 	 greater than or equal to minimum at least is not less than is not smaller than 	 greater than is more than is larger than above 	equalissame

ORIGINAL EXPRESSION	PROPERTY	EQUIVALENT EXPRESSION	
8 + 0	IDENTITY	0	
6 • 3 • 2	COMMUTATIVE	3 · 2 · 6	
6 + (3 + 2)	ASSOCIATIVE	(6+3)+2	
8(x + 7)	DISTRIBUTIVE	8x + 56	

PROPERTIES OF OPERATIONS RESULT IN EQUIVALENT EXPRESSIONS

The **RECIPROCAL** of a number results in a

PRODUCT OF I. $\frac{5}{6} \cdot \frac{6}{5} = 1$

broberties of oberations