SLOPE FROM A GRAPH

 Calculate the rise (vertical change) and the run (horizontal change) between the two points. Write as <u>rise</u>.

©2016 Lindsay Perro. All Rights Reserved.

run

www.beyondtheworksheet.com

SLOPE FROM TWO POINTS

- (x_1, y_1) and (x_2, y_2)
 - Substitute the numbers from each ordered pair into the equation $\frac{y_2 y_1}{x_2 x_1}$.
 - Be careful with negative numbers. Remember that subtracting a negative is the same as adding a positive. (e.g. 5 4 = 5 + 4)

GRAPHING LINEAR EQUATIONS

- Slope intercept form : y = mx + b
 - x and y are the coordinates in an ordered pair on the line.
 - m is the slope
 - b is the y-intercept
- Graph the y-intercept first. From there, use the slope to determine an additional point or two.

©2016 Lindsay Perro. All Rights Reserved.

www.beyondtheworksheet.com

WRITING LINEAR EQUATIONS

- From a line, identify the slope and y-intercept.
- If the y-intercept is not obvious, pick two points on the line and use them to first find the slope.
 Substitute the slope and coordinates of one point into y = mx + b and solve for b (the y-intercept).
- Substitute the slope (m) and y-intercept (b) into the equation y = mx + b.

MULTI-STEP EQUATIONS

- Eliminate parentheses using the distributive property.
- Combine like terms.
- Ensure the variables are on one side of the equation.
- Eliminate the constant through inverse operations (usually addition or subtraction).
- Eliminate the coefficient through inverse operations (usually multiplication or division).

©2016 Lindsay Perro. All Rights Reserved.

www.beyondtheworksheet.com

VOLUME OF ROUNDED FIGURES

- Cylinders : π r^2 h
- Cones: $\frac{1}{3} \bullet \pi \bullet r^2 \bullet h$
- Spheres : $\frac{4}{3} \bullet \pi \bullet r^3$

SCIENTIFIC NOTATION

- Multiplying: Multiply the first terms. Add the exponents.
 - $(a \cdot 10^m) \cdot (b \cdot 10^n) = ab \cdot 10^{m+n}$
- Dividing: Divide the first terms. Subtract the exponents.

$$\bullet \quad \frac{a \cdot 10^m}{b \cdot 10^n} = a \div b \cdot 10^{m-n}$$

©2016 Lindsay Perro. All Rights Reserved.

www.beyondtheworksheet.com

TRANSFORMATIONS

- Translations:
 - Vertical or horizontal slide
 - $(x, y) \longrightarrow (x + a, y + b)$
- Reflections:
 - Vertical or horizontal flip
 - \mathbf{x} : $(x, y) \longrightarrow (x, \neg y)$ \mathbf{y} : $(x, y) \longrightarrow (\neg x, y)$
- Rotations:
 - 90°, 180° or 270° clockwise or counter-clockwise rotation around a point.
 - 90° cc : $(x, y) \longrightarrow (\neg y, x)$
- 180° cc : $(x, y) \longrightarrow (-x, -y)$

- Dilations:
 - A stretch or shrink using a given scale factor (k).
 - (x, y) → (kx, ky)

PARALLEL LINES & TRANSVERSALS

PARALLEL LINES	Two lines that will never cross.
TRANSVERSAL	A line that cuts through two parallel lines.
SUPPLEMENTARY ANGLES	Angles with a sum of 180°. Examples : <7 and <8, <1 and <2
INTERIOR ANGLES	Angles along the transversal inside the parallel lines. Examples : Angles 2, 3, 6 and 7
ALTERNATE ANGLES	Angles on opposite sides of the transversal. Examples : <2 and <7 are alternate interior angles.
CORRESPONDING ANGLES	Two angles that are in the same place, on different parallel lines. For example, <2 and <4 are corresponding angles.
VERTICAL ANGLES	Vertical angles share a vertex but not a side. Example : <3 and <8 are vertical angles.

©2016 Lindsay Perro. All Rights Reserved.

www.beyondtheworksheet.com